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Abstract— With the rapid development of autonomous vehi-
cles, there witnesses a booming demand for high-definition maps
(HD maps) that provide reliable and robust prior information
of static surroundings in autonomous driving scenarios. As one
of the main high-level elements in the HD map, the road lane
centerline is critical for downstream tasks, such as prediction
and planning. Manually annotating lane centerline HD maps by
human annotators is labor-intensive, expensive and inefficient,
severely restricting the wide application and fast deployment of
autonomous driving systems. Previous works seldom explore the
centerline HD map mapping problem due to the complicated
topology and severe overlapping issues of road centerlines. In
this paper, we propose a novel method named CenterLineDet
to create the lane centerline HD map automatically. Center-
LineDet is trained by imitation learning and can effectively
detect the graph of lane centerlines by iterations with vehicle-
mounted sensors. Due to the application of the DETR-like trans-
former network, CenterLineDet can handle complicated graph
topology, such as lane intersections. The proposed approach is
evaluated on a large publicly available dataset Nuscenes, and
the superiority of CenterLineDet is well demonstrated by the
comparison results. This paper is accompanied by a demo video
and a supplementary document that are available at https:
//tonyxuqaq.github.io/projects/CenterLineDet/.

I. INTRODUCTION

High-definition maps (HD maps) are critical to nowa-
days autonomous driving vehicles since they provide re-
liable information about static surroundings to assist the
autonomous vehicle. HD maps have many layers consisting
of various line-shaped road elements. Lower-level layers
are composed of physically existing elements (e.g., road
boundaries, road curbs, and road lanelines), while high-level
layers have virtual elements (e.g., road lane centerlines).
All of the aforementioned HD map layers are recorded
in vector data format (i.e., as graphs with vertices and
edges). Road elements in low-level layers of the HD map
are usually utilized to prevent potential collisions and assure
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the safety of vehicles. High-level layers of HD maps define
the path that vehicles can drive on and contain all the
topology information of roads, thus they are important for
downstream tasks, such as vehicle planning, prediction and
control [1]–[3]. At this stage, creating the HD map of a
target region heavily relies on human annotators, which
is labor-intensive, inefficient, and expensive. Therefore, an
approach that automatically creates the HD map of road
lane centerlines is of great interest to the industrial and
research communities. Unlike low-level road elements, road
lane centerlines have complicated topology structures (e.g.,
intersections) and severe overlapping issues, thus making the
detection of lane centerline graphs challenging.

To the best of our knowledge, with multi-frame data
sequence collected by vehicle-mounted sensors as input,
most previous works only focus on the detection task in a
single frame and output rasterized results [4]–[9], which does
not meet the requirement of the HD map mapping task that
demands global vectorized detection results.

Even though some previous works seek to detect road
elements for vectorized map creation purposes, such as
road network graph detection [10], [11], road laneline graph
detection [12], [13] and road boundary detection [14]–[17],
they rely on bird-eye-view (BEV) aerial images captured
by satellites or UAVs, instead of data collected by vehicle-
mounted sensors that we discuss in this work.

To conquer the aforementioned problems of previous
works, in this paper, we present CenterLineDet (i.e., Lane
CenterLine Graph Detector), a DETR-like [18] model that
detects the global lane centerline graph with vehicle-mounted
sensors for multi-frame and long-term HD map mapping
purpose. CenterLineDet first fuses data collected by sensors
in multiple frames and projects it to the BEV, then itera-
tively generates the global HD map by a trained DETR-like
decision-making transformer network. CenterLineDet works
on sequential data and does not require pre-built point cloud
maps like some past works [13], [15].

The contributions of this work are as follows:
1) We present CenterLineDet, an effective deep learning

approach that automatically creates the global HD map
of lane centerlines with sequential data captured by
vehicle-mounted sensors as input.

2) We evaluate CenterLineDet on a large publicly avail-
able dataset NuScenes [19] to demonstrate the superi-
ority of our approach.

3) We will open source the code and data of this work.

https://tonyxuqaq.github.io/projects/CenterLineDet/
https://tonyxuqaq.github.io/projects/CenterLineDet/


II. RELATED WORKS

A. Applications of Road Lane Centerline HD map

Road lane centerlines are virtual lines defined by humans
based on road topology, road connectivity, and traffic rules.
Thus, lane centerlines contain abundant information of roads,
which makes it critical for plenty of downstream tasks of
autonomous vehicles, such as motion prediction [1]–[3],
[20], and vehicle navigation (i.e., planning and control) [21].
Christensen et al. proposed an autonomous driving system
for micro-mobility. The global planner and local planner of
this system heavily relied on the lane centerline HD map.
For the global planner, the centerline HD map was used to
calculate the shortest path to the destination since it contained
all the topology and connectivity information of the road
network. For the local planner and controller, the vehicle was
controlled to follow the lane centerline ahead (the centerline
HD map defines the path that vehicles can drive on). Liang
et al. [2] extracted features of lane centerline HD maps by
a graph neural network as prior information to assist the
motion prediction of objects on the road.

B. Road Element Detection with Vehicle-mounted Sensors

Most previous works resort to end-to-end perspective
transformation to detect road elements in BEV [4]–[9]. In
these works, with data collected by vehicle-mounted sensors
as input, a deep learning network was trained to fuse the
data and outputted the probabilistic distribution of target
elements in the BEV. Li et al. [4] fused six vehicle-mounted
cameras together with a LiDAR, and trained an end-to-end
deep neural network to predict the BEV segmentation map of
road lanelines. Based on the segmentation results of the BEV
image, the authors vectorized the segmented lanelines by the
skeletonization algorithm to obtain the final road laneline
graph. Can et al. [8], [9] modeled the lane centerline by
B-splies, and predicted splines in the current frame by a
DETR-like network.

To the best of our knowledge, most aforementioned works
only focus on the detection task in a single frame [4], [8],
[9], leaving the problem of merging local maps of multiple
frames into a single global map (i.e., long-term mapping
problem) unexplored. Moreover, their task is the detection of
simple road elements without complicated topology changes
or overlapping issues, such as road boundaries and road lane-
lines [22]. To further improve the detection results of road
elements, some works resort to additional data like Open
Street Map (OSM) [21], [23] for enhancement. However, all
the above works cannot well handle the following problems
of lane centerline HD map mapping: (1) how to handle com-
plicated topology and overlapping issues, especially within
the road intersection areas; (2) how to merge detection results
of each frame into the final global vectorized HD map.

III. METHODOLOGY

A. Overview

In this work, we aim to detect the road lane centerline
graph for HD map automatic creation by using sequential

vehicle-mounted sensor data. The input data of our system
is a sequence of RGB images captured by six cameras (i.e,
I = {Ii}6i=1) and point clouds obtained by a LiDAR (i.e.,
P ). There are multiple frames in the data sequence, and
T denotes the current frame. The expected output is the
global graph of road lane centerlines in the world coordinate
system (i.e.,G = (V,E)), where V is a set of lane centerline
vertices, and E represents lane centerline edges connecting
corresponding adjacent vertices. The approach overview is
visualized in Fig. 1.

CenterLineDet has two major steps: In the current frame
T , (1) predict the BEV heatmap of lane centerlines HL by
perspective transformation, and (2) obtain the lane centerline
graph in the world coordinate system. After processing
all frames in the input sequence, the expected road lane
centerline graph is obtained. For the first step, we propose
FusionNet which enhances the original HDMapNet [4] by
combining the fully-connected neural view transformer with
inverse perspective mapping (IPM), which can extract the
lane centerline with better geometric accuracy. Besides HL,
we also predict a feature tensor FT and the heatmap of
candidate initial vertices HI by FusionNet. To conquer
the prediction inconsistency of frames, we fuse the feature
tensors of neighboring frames by warping and averaging.

For the second step, we propose a DETR-like transformer
as the decision-making network to control an agent to
generate the lane centerline graph vertex by vertex. To start
up the iteration, we use local peaks in HI and endpoints
in the previous frame T − 1 as candidate initial vertices of
the current frame T , which is denoted by S = {sk}Kk=1.
Vertex vt is used to denote the current position of the agent.
After concatenating the interpolated BEV feature tensor F
with the ego historical map ME , an ROI R is cropped
centering on vt as the local visual information for the agent to
make decisions. ME is a binary map recording the historical
trajectory of the agent in the ego vehicle coordinate system.
Taken as input R, the transformer predicts N valid vertices
in the next step as a set V = {vit+1}Ni=1. Based on N ,
the agent will take different actions to update the graph
iteratively. When the detection of the current lane centerline
instance is completed, the agent turns to another candidate
initial vertex sk and repeats the aforementioned algorithm.
Once S is empty, we switch to process the next frame of the
sequence. In the end, a graph in the world coordinate system
is obtained as the predicted HD map of road lane centerlines.

More details of CenterLineDet are provided in the supple-
mentary document.

B. Perspective Transformation

For the convenience of afterward centerline graph de-
tection task, we convert the scene from vehicle-mounted
sensors to a square BEV in advance. The BEV centers on the
ego vehicle, and its x-axis aligns with the vehicle heading
direction.

HDMapNet [4] applies neural view transformers to trans-
form each perspective image feature into a local BEV feature
map using fully-connected layers. Then it aligns the local
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Fig. 1: CenterLineDet overview. Our proposed approach consists of two parts: perspective transformation and iterative
vectorization. The first part relies on perspective transformation networks (HDMapNet/FusionNet in our work) to predict
BEV heatmaps. The second part is the main contribution of this work, which trains a DETR-like transformer network to
control an agent exploring the scene by iterations, whose trajectory is the global vectorized lane centerline graph.

BEV feature map with the global BEV feature map according
to the extrinsic parameters of each camera. The mapping ϕi

between the perspective view feature and the BEV feature
can be denoted as:

Fi
bev = ϕi(FIi), (1)

where i is the index of the camera. In order to improve the
generalization ability and the geometric precision of the fea-
ture transformation, we propose to enhance the neural view
transformer with inverse perspective mapping (IPM). Based
on the projective geometry of the camera, IPM computes
a mapping between points in the BEV and the perspective
view, and obtains a BEV feature map with solid geometric
priors. The FusionNet we propose treats IPM as a shortcut
without learnable parameters and ϕi as a learnable residual
mapping function. The fused camera BEV feature map is the
summation of the two mapping results:

Fbev = max
i

{IPM(FIi) + ϕi(FIi)} . (2)

The fused BEV features are fed into a sequence of CNN
networks to predict a pixel-wise lane centerline segmentation
in the BEV.

C. Lane Centerline Graph Detection

In this section, we show how CenterLineDet detects the
lane centerline graph and how the proposed imitation learn-
ing algorithm generates expert demonstrations to train the
transformer network.

1) Inference: CenterLineDet is trained to mimic expert
human annotators to create the HD map of lane centerlines
vertex by vertex. It has a DETR-like transformer, a decision-
making network controlling an agent to create the HD map
of lane centerlines. At each step of the iteration, based on
the local visual feature, the agent predicts vertices in the
next step and takes corresponding actions to explore the
scene. The historical trajectory of the agent is outputted
as a prediction of the lane centerline graph. The inference
working pipeline of CenterLineDet is shown in Fig. 1.

To record the historical information which is critical for
the decision-making process of CenterLineDet, we maintain

a binary historical map ME . Each frame has a ME . ME

is in the ego vehicle coordinate system, which is directly
used to guide the decision-making of the agent, while MW

is in the world coordinate system to assure the consistency
of ME in neighboring frames.

At frame T of the input data sequence, after obtaining
HL, HI and FT from the perspective transformation, we first
find local peak points in HI and endpoints in the previous
frame as a set of candidate initial vertices S = {sk}Kk=1

to initialize the iteration of CenterLineDet. Then, starting
from a randomly selected sk, CenterLineDet controls an
agent to detect one lane centerline instance. Since there
exists inconsistency between the BEV segmentation result of
different frames, based on ego vehicle poses, we warp and
project the neighboring BEV feature tensors FT−τ ∼ FT+τ to
FT. After summation and averaging, the fused feature tensor
in the current frame T is denoted as F̃T. Then, we interpolate
F̃T into F, and concatenate it with ME . After this, an ROI
R centering on the current vertex vt that the agent locates
is cropped, which contains sufficient visual information for
the transformer to make the decision. Taken as input R,
the transformer network outputs the coordinates and valid
probability of N̂ vertices in the next step V = {vit+1}N̂i=1.
Predicted vertex vit+1 with high enough valid probability is
accepted as a new vertex to update the graph. N̂ is the same
as the number of input vertex queries. Suppose we have N
valid predicted vertices, then the agent should take different
actions based on N to handle multiple topology structures
of the lane centerline graph. N = 0 indicates the end of
the current lane centerline in the current frame. vt under
such circumstances is treated as an endpoint, which can be a
candidate initial vertex in the next frame. The agent should
turn to work on another candidate initial vertex in S. N = 1
means the agent moves along a lane centerline without
branches, so the agent should keep moving to the next vertex
vit+1 for graph updating. N > 1 demonstrates complicated
topology structures are met, such as lane intersections, lane
split, and lane merge. The agent should push all vit+1 into S
as new candidate initial vertices, and pop one sk from S to
work on.
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When S is empty, we switch to the next frame T+1 of the
sequence to continue the detection task. We use endpoints in
the current frame (i.e.,N = 0) and local peaks in HI of frame
T +1 as initialized S for frame T +1. The candidate initial
vertices in frame T is visualized in Fig. 2. For candidate
initial vertices that have been explored in the past, the agent
will ignore them and remove them from S.

After all the frames of the input data sequence are pro-
cessed, the trajectories of the agent is outputted as the final
predicted lane centerline graph.

2) Expert demonstration sampling: In our experiments,
training data is generated by a proposed sampling algorithm
(i.e., expert in imitation learning). For better training effi-
ciency, in our experiment, behavior-cloning sampling algo-
rithm [24] is adopted. Based on breath-first-search (BFS),
the sampling algorithm traversals the ground truth lane
centerline graph G∗ vertex by vertex. At each position vt, it
generates one training sample. To enhance the robustness of
CenterLineDet, we add even distributed noise to the expert
trajectory during data sampling. The simplified diagram of
the sampling algorithm is visualized in Fig. 3.

During the sampling of the behavior-cloning algorithm,
the ground truth label of the current step is obtained by the
following equation:

V∗ = f(vt, G
∗,ME), (3)

where function f(·) can calculate the label vertices in the
next step based on the ground truth graph G∗ and historical
information. In our experiments, f(·) is modified from the
labeling algorithm proposed in [10], which can handle the
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Fig. 3: Diagrams of expert demonstration sampling by behav-
ior cloning. For simplicity, in this figure, we only visualize
modules (c)-(e), while other modules of this figure are the
same as that of Fig. 1.

labeling task in graphs with complicated topology. To make
CenterLineDet more robust, we add random noise to V∗

when updating the graph.

IV. EXPERIMENTAL RESULTS

To evaluate and verify the superiority of our proposed
CenterLineDet, we conduct comparison experiments and
ablation studies on an open sourced dataset NuScenes [19].
NuScenes is a large dataset containing data collected from
various different autonomous driving scenarios. This dataset
provides hundreds of data sequences collected by vehicle-
mounted sensors. Each sequence has 40 frames with a 2Hz
frame rate. We split around 700 sequences for training, and
around 150 sequences for inference. Since CenterLineDet is
of two stages and heavily relies on the BEV segmentation of
perspective transformation, scene sequences that either have
no centerlines within or perspective transformation has no
reasonable outputs are not included in the inference set.

A. Evaluation Metrics

To evaluate the performance of approaches from both
pixel-level and topology-level perspectives, we modify the
metrics used in [25] and [26] for our experiments. There are
three pixel-level metric scores pixel-precision (P-P), pixel-
recall (P-R) and pixel-f1 (P-F) to evaluate the prediction
correctness at pixel scale. Suppose we have the predicted
graph Ĝ and ground truth graph G∗. For a vertex p in Ĝ, if
there exist one vertex q in G∗ whose distance to p is smaller
than a threshold δ, then p is regarded as a correct prediction.
Similarly, for a vertex q in G∗, if there exist one vertex p in
Ĝ whose distance to q is smaller than δ, then q is correctly
retrieved. The pixel-level metrics can be calculated based on
the following equations:

P-P =
|{p|∥p− q∥ < δ, p ∈ Ĝ,∃q ∈ G∗}|

|Ĝ|

P-R =
|{q|∥p− q∥ < δ, q ∈ G∗,∃p ∈ Ĝ}|

|G∗|
,

(4)



TABLE I: The quantitative results for comparison experi-
ments.

Approaches

Single-frame Multi-frame

Pixel-level ↑ Pixel-level ↑ Topology-level ↑

P-P P-R P-F P-P P-R P-F T-P T-R T-F

HDMapNet [4] 0.805 0.649 0.709 0.714 0.665 0.685 0.517 0.354 0.400
TopoRoad [9] 0.408 0.566 0.461 0.410 0.526 0.477 0.360 0.349 0.352

FusionNet 0.813 0.658 0.719 0.726 0.674 0.695 0.518 0.356 0.403

CenterLineDet
+HDMapNet 0.785 0.675 0.711 0.700 0.713 0.699 0.768 0.403 0.511
+FusionNet 0.811 0.675 0.725 0.732 0.708 0.714 0.782 0.409 0.518

where | · | is the cardinality of a set. P-F is a combination of
P-P and P-R, which is equal to 2P-P·P-R

P-P+P-R .
There are also three metric scores to evaluate the topology

correctness of the predicted graph, i.e., topology-precision
(T-P), topology-recall (T-R) and topology-f1 (T-F). For each
vertex q in G∗, we find all vertices in G∗ that q can reach
within distance ϵ as a sub-graph G∗

q . Then, we find the vertex
p̃ in Ĝ that is closest to q and use sub-graph Ĝp̃ to represent
all vertices in Ĝ that p̃ can reach whose distance to p̃ is
smaller than ϵ′. After calculating pixel-level scores between
obtained sub-graphs G∗

q and Ĝp̃, we have the topology-
scores:

T-X =

∑
q∈G∗ P-X(G∗

q , Ĝp̃)

|G∗|
, (5)

where p̃ is the closest point in Ĝ to q, and letter X can be
P, R or F.

B. Comparative Results

In this section, we evaluate CenterLineDet under different
settings and baseline models to justify the superiority of our
proposed approach. For a fair and comprehensive compar-
ison, we evaluate all approaches in both single-frame and
multi-frame detection tasks. Single-frame and multi-frame
evaluation results are shown in Tab. I. Example results are
visualized in Fig. 4. Since CenterLineDet does not predict on
single frames, we only report the pixel-level result of single
frames.

Baselines To the best of our knowledge, very few past
works have exactly the same research scope as ours, i.e.,
detecting the graph of road lane centerlines in sequential
data collected by vehicle-mounted sensors. They either only
focus on single-frame detection tasks or resort to other format
input data (e.g., aerial image and OSM). Therefore, in the
comparison experiments, we create our own baseline models
based on past works. The evaluated approaches are listed
below:

• HDMapNet [4] (ICRA2022): HDMapNet is one of the
state-of-the-art approaches for road element perception
and vectorization with perspective transformation, but
it is mainly for single-frame detection tasks. To adapt
it to our multi-frame detection task, we apply the
frame merging method proposed in [22] to construct
the world-level graph of lane centerlines.

TABLE II: The quantitative results for multi-frame ablation
studies.

Approaches
Pixel-level ↑ Topology-level ↑

P-P P-R P-F T-P T-R T-F

CenterLineDet-No LiDAR 0.719 0.683 0.698 0.721 0.365 0.466
CenterLineDet-No Camera 0.631 0.576 0.605 0.620 0.338 0.394

CenterLineDet 0.732 0.708 0.714 0.782 0.409 0.518

• TopoRoad [9] (CVPR2022): TopoRoad is a DETR-like
model, which can predict lane centerlines as B-splines
in a single frame. We apply the same frame merging
method as the HDMapNet baseline to merge multiple
frames in the data sequence.

• FusionNet: FusionNet enhances HDMapNet by combin-
ing IPM with fully-connected neural view transformers
to better learn the geometric transformation. Similar
to HDMapNet baseline, we first obtain single-frame
heatmaps and then merge them into the final multi-
frame detection result.

CenterLineDet We evaluate and show the results of
CenterLineDet with different perspective transformation net-
works (i.e., HDMapNet and FusionNet). CenterLineDet is
trained by behavior-cloning.

Discussion TopoRoad [9] outputs noisy graph in each
frame, and it is almost impossible to merge graphs of each
frame into a consistent global one. From the results in
Tab. I, we observe that FusionNet gains enhancement than
past works, which proves the effectiveness of the fusion
of IPM and fully-connected neural view transformers. For
each perspective transformation model, corresponding Cen-
terLineDet presents superior final performance, especially in
multi-frame evaluations. This is because the agent controlled
by CenterLineDet can make more appropriate decisions for
graph detection. From visualizations in Fig. 4, it is observed
that CenterLineDet is the only approach that can distinguish
centerline instances, while baselines mess up instances that
causes incorrect topology.

C. Ablation Studies

In this section, we verify the importance of some modules
of CenterLineDet, including the input LiDAR point clouds
and input camera images. The quantitative results of ablation
studies are shown in Tab. II.

For LiDAR and cameras, we test the necessity of them
by removing one of these sensors at a time. From Tab. II,
we can see that removing either LiDAR or cameras will
degrade the final results, and CenterLineDet without cameras
has much inferior performance. This indicates the importance
of data fusion, and camera images are the dominant informa-
tion source of CenterLineDet. Based on the aforementioned
observations, the rationality of our system design is justified.

D. Time Complexity

Our experiments were conducted on a server with an i7-
8700K CPU and 4 RTX-3090 GPUs. We report experiment
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Fig. 4: Qualitative visualizations. Different colors represent different road centerline instances. CenterLineDet is the only
approach that can detect and distinguish multiple instances. All baselines mess up different instances, which leads to incorrect
topology, especially in the intersection area. For better visualization, graphs are widened but they are actually of one-pixel
width. Please refer to the supplementary document for additional visualizations. Please zoom in for details

time usage with 4 gpus as follows:
1) It takes one day to train HDMapNet or FusionNet.
2) It takes 13 minutes to infer 5981 frames (148 scenes)

for HDMapNet or FusionNet.
3) It takes around 5 hours for behavior-cloning sampling,

and it takes one extra day to train CenterLineDet with
behavior-cloning sampled data.

4) It takes overall 41 minutes for CenterLineDet to infer
5981 frames (0.41s/frame=2.43Hz, which is sufficient
for Nuscenes with 2Hz key frame rate). Besides, it
should be noted that CenterLineDet does not need to
work in an online manner (i.e., HD map mapping task
is not an online task).

E. Limitation

This paper claims two limitations of the proposed ap-
proach: (1) CenterLineDet is restricted by the perspective
transformation performance. CenterLineDet is of two stages
and cannot be trained in an end-to-end manner, which
degrades the final performance. If the perspective transforma-
tion module presents awful BEV heatmaps, CenterLineDet
would be greatly affected. (2) Although CenterLineDet

presents the best performance in evaluation experiments, it
still cannot handle too complicated intersection areas very
well. We aim to solve this problem by applying more
powerful perspective transformation models.

V. CONCLUSION AND OUTLOOK

We presented CenterLineDet in this paper for the auto-
matic creation of the lane centerline HD map by vehicle-
mounted sensors. The key problem was detecting the lane
centerline graph with complicated topology. Taken as input
data sequences from multiple sensors, CenterLineDet first
predicted the BEV segmentation heatmap of lane centerlines.
Then, a decision-making transformer network was trained
to control an agent exploring the scene to create the lane
centerline graph vertex by vertex. After processing all frames
of the input data sequence, the trajectory of the agent
was outputted as the lane centerline graph for HD map
creation. The effectiveness and superiority of CenterLineDet
were demonstrated by the comparison experiments on a
publicly available dataset. In the future, we plan to adopt
more powerful perspective transformation models and make
CenterLineDet end-to-end trainable.
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