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I. INTRODUCTION

In this supplementary document, we provide more detailed
explanations of concepts and visualizations of CenterLineDet
due to the manuscript page limit.

II. ROAD LANE CENTERLINE

A. What is Lane CenterLine?

In this work, we aim to detect the graph of road lane
centerlines for HD map creation. Road lane centerlines are
virtual lines that vehicles drive on. They are critical for the
prediction and planning algorithms of autonomous vehicles
but do not physically exist. Besides, lane centerlines can
have very complicated topology near lane intersections, lane
splits and lane merges, which makes our task even more
challenging. The diagram showing the definition of lane
centerline is shown in Fig. 1.
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Fig. 1: Road elements. Each red rectangle crops a lane area.
Green lines mark lanelines that draw the boundary of lane
areas. Both lane and lanelines are physical existing elements.
Blue lines are lane centerlines, which are virtual lines defined
by humans.

B. Why CenterLine Matters?

Please see Fig. 2 for information.

III. HOW BASELINES WORK?

Previous works mainly focus on the detection task of
relatively simpler road elements (e.g., laneline and road
boundary), which usually have no overlapping or compli-
cated topological structure. In HDMapNet [1], the authors
can simple project detection results of each frame into the
world coordinate system and merge them into a global map,
which is visualized in Fig. 3.

Fig. 2: Visualization of commonly used HD map. Different
from road elements such as lanelines and boudanries, lane
centerlines (pink lines in this figure) are high-level layer of
the HD map. They define the path that vehicles can drive
on, thus they can be directly used to assist the planning and
prediction task of vehicles. Therefore, the detection of lane
centerlines is important for the automatic create of HD maps.
(Image url: https://www.automotiveworld.com/articles/hd-
maps-the-hidden-sensors-that-help-autonomous-vehicles-
see-round-corners/)

Fig. 3: HDMapNet long-term temporal accumulation (i.e.,
multi-frame mapping). This naive multi-frame fusion method
works fine for simple road elements without overlapping or
topology changes.

However, for lane centerlines that have much more com-
plicated topology and severe overlapping, this method tends
to fail. The pipeline of how baselines detect lane centerlines
is visualized in Fig. 4.

The problems of previous for HD map mapping can be
briefly summarized as: (1) they output rasterized results
while HD map requires vectorized data; (2) they cannot
handle overlapping centerline instances; (3) they are not
designed for long-term multi-frame mapping purpose, thus
their systems do not have corresponding optimizations for
HD map mapping. Most previous works only focus on the
detection of objects in a single frame.
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Fig. 4: Pipeline of baselines for lane centerline detection. (a) Raw segmentation map in the world coordinate system fused
by multiple frames. (b) Binarization result. (c) Extract the skeleton of the binary map. (d) Refine the skeleton by connecting
closed endpoints and filter short line segments. To the best of our knowledge, all previous works at most do frame fusion
only (i.e., they only do step (a)), since steps (b)-(d) are steps for vectorized results. From the results, we can see that since
the complicated topology and overlapping of lane centerlines, baselines methods cannot handle intersection areas or topology
changes very well. Baselines methods output noisy results, which have unsatisfactory topology correctness. Please zoom in
for details.

IV. CENTERLINEDET

A. How does CenterLineDet solve problems?
To handle the aforementioned problems of previous works,

we propose CenterLineDet, which utilizes imitation learning



and a DETR-like decision-making network for HD map
creation. The working pipeline of CenterLineDet in a single
frame is visualized in Fig. 5, and the final obtained graph is
visualized in Fig. 6.
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Fig. 5: Pipeline of CenterLineDet for lane centerline detec-
tion. In each ego frame, we first predict candidate initial
vertices (left figure). Then, CenterLineDet is initialized with
one initial vertex (in the red rectangle in left figure). Next,
starting from the initial vertex, CenterLineDet iteratively
generates the graph by predicting vertices in the next step.
In the right figure, pink points are generated vertices, orange
lines are generated edges, yellow point is where the agent
is currently locating. The agent will predict vertices in the
next step based on the visual information within the red
rectangle. The cyan point represents the predicted vertex
in the next step. The CenterLineDet agent keeps repeating
the above processes to detect the centerline graph. It should
be noted that, CenterLineDet agent makes decisions based
on ego frame information while it is recorded in the world
coordinate system. Thus it can directly generate the final
required global centerline graph. Please zoom in for details.

The advantages of CenterLineDet can be briefly sum-
maried here: (1) it directly outputs vectorized results; (2)
it can better handle overlapping instance and complicate
topology than baselines; (3) it records the graph in the world
coordinate system, thus it can better merge the detection
results of multiple frames. In conclusion, we claim that
CenterLineDet presents superiority upon baseline models for
the centerline HD map mapping task.

B. Inverse Perspective Mapping (IPM)

First, We obtain the coordinates of the the center of the
BEV maps with respect to the base link of the vehicle as
Xgrid = (xgrid, ygrid, zgrid). For each image from a camera
m, we project these points on to each camera with the
extrinsic matrix and intrinsic matrics to obtain Xcam =
K(RXgrid + T ). We select points inside of FOV of the
camera, and we sample feature vectors from the front view to
the BEV features Fm

bev(Xgrid) = Im(Xcam) using bilinear
interpolation. Finally, we aggregate all the features from six
cameras to get FBEV =

∑
m(Fm

BEV ). We will modify the
manuscript to provide more information of IPM.

C. Fuse of neighboring frames

In our experiments, there are intersection regions between
neighboring frames. For an intersection region, the seg-
mentation heatmap of different frames could be different.
Suppose we are at frame T now. To handle inconsistent
perspective transformation results of neighboring frames, we
fuse neighboring frames (from T − τ to T + τ ) by warping
and averaging. The visualization of the fusing process is
visualized in Fig. 7.

D. Candidate initial vertices

At each frame T , there is a set of candidate initial vertices
as a set S = {sk}Kk=1 to initialize the agent. There are two
kinds of candidate initial vertices: (1) points extracted by
finding local peaks in the segmentation heatmap HI , and (2)
endpoints of the previous frame. Candidate initial vertices
are visualized in Fig. 8.

V. EXPERIMENTAL SETTINGS

In our experiments, images from six cameras and point
cloud captured by the top LiDAR are utilized. NuScenes also
releases the HD map of road lane centerlines, consisting of
vertices and edges. After warping, modifying, and cropping
the source HD map in NuScenes, we obtain the ground truth
lane centerline graphs G∗ that can be used to generate expert
demonstrations in our task.

The size of the predicted BEV is 200p×200p, correspond-
ing to a 50m×50m-sized square region centering on the
vehicle in the real world.

We train FusionNet with a learning rate as 10−3, and train
the transformer network with a learning rate as 10−4. The
decay rate of both networks is 10−4. For better performance
and faster convergence, the FusionNet and the transformer
are trained separately. The FusionNet and other baseline per-
spective transformation networks are trained for 50 epochs.
After obtaining the training data by the proposed behavior-
cloning sampling algorithm, we train the transformer network
for 75 epochs. All experiments are conducted on a PC with
4 RTX-3090 GPUs.

VI. ADDITIONAL VISUALIZATIONS

More qualitative visualizations of our approach results are
shown in Fig. 9 and Fig. 10. CenterLineDet presents more
accurate results, especially in the road intersection areas
where centerlines severely overlap with each other. Please
zoom in to check the intersection areas.
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(a) Ground truth (b) Centerline graph obtained by baselines (c) Centerline graph obtained by Center-
LineDet

Fig. 6: Final results comparison. Compared with baselines, CenterLineDet can handle more complicate cases based on
the DETR-like decision-making network. Thus, it has much better ability to handle complicate centerline topology and
overlapping issues. Please zoom in for details.
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Fig. 7: Visualization of fusing neighboring frames. For better
visualization, we use the ground truth lane centerline (cyan
lines) to represent the predicted BEV heatmap HT

L . Suppose
τ = 1. (1) We project neighboring frame BEV maps to HT

L

(i.e., green frame in this figure) based on vehicle poses. (2)
Within HT

L , we sum HT
L with projected neighboring BEV

maps and average. (3) The sum-averaged BEV map H̃T
L

is used as the new BEV segmentation heatmap that fuses
neighboring frames at the current step T . The afterward
decision-making transformer controls the agent based on the
visual information provided by H̃T

L .

Ego 

Ego 

World

CenterLineDet

Predicted graph in 
frame Cyy

Two endpoints in frame     .
They are candidate initial vertices 
in the next frame.

HT
L

HT
I

HT+1
I

HT
L HT+1

L HT+2
L

ST+1

T + 1

Fig. 8: Candidate initial vertices of frame T + 1. For better
visualization, we use the ground truth lane centerline (cyan
lines) to represent the fused predicted BEV heatmap H̃T

L .
The candidate initial vertices of frame T +1 come from (1)
local peaks of the heatmap HT+1

I and (2) endpoints of frame
T . Endpoints are vertices at which the agent decides to stop
in the previous frame. This figure is best viewed in color.
Please zoom in for details.



(a) GT (b) HDMapNet [1] (c) TopoRoad [2] (d) FusionNet (e) CenterLineDet

Fig. 9: Qualitative visualizations. Different colors represent different road centerline instances. CenterLineDet is the only
approach that can detect and distinguish multiple instances. All baselines mess up different instances, which leads to incorrect
topology, especially in the intersection area. For better visualization, graphs are widened but they are actually of one-pixel
width. Zoom in for details, especially intersection areas.



(a) GT (b) HDMapNet [1] (c) TopoRoad [2] (d) FusionNet (e) CenterLineDet

Fig. 10: Qualitative visualizations. Different colors represent different road centerline instances. CenterLineDet is the only
approach that can detect and distinguish multiple instances. All baselines mess up different instances, which leads to incorrect
topology, especially in the intersection area. For better visualization, graphs are widened but they are actually of one-pixel
width. Zoom in for details, especially intersection areas.
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