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1 Introduction

In this supplementary document, we provide more details of the enhanced-iCurb model, data structure
and evaluation metrics.

2 Enhanced-iCurb

Different from iCurb, enhanced-iCurb generates unique labels for training that do not rely on the prediction
of the next vertex (i.e., v̂t+1). The label generation method of iCurb is shown in Fig. 1.

Figure 1: The visualization of the principles of iCurb to generate labels for agent training. The ground-
truth road curbs are shown by cyan lines. The label used to train the agent is shown by the pink node. The
generated vertices are denoted by yellow nodes, and edges are solid orange line segments. The yellow
rectangle is the attention region (i.e., crop(Ft)). Suppose now we have vt and v∗t . In this example, the agent
moves from left to right towards the blue end vertex. Within crop(Ft), the red lines represent explored
road curb pixels (i.e., past road curb). Then, we draw a pink circle centering at v∗t , whose radius is 15
pixels in our experiments. v∗t+1 should be outside of this circle. And in this example, v∗t+1 must locate on
the green road curb pixels (i.e., available road curb). In this way, we can guarantee that v∗t+1 is after v∗t
and away from it far enough at the same time.

The problems of the above label generation method are: (1) the label relies on v̂t+1, thus it is not unique
at time t. This could make the model converge to sub-optimal or have unexpected behaviors; (2) the
agent may have poor performance around the corner, since this label generation method cannot be aware
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of corners and force the agent to decrease its step size around the corner, which the agent should have
done.

To solve the above shortcomings, we utilize the orientation map to generate labels. The algorithm is
demonstrated in Fig. 2.

𝑣𝑡

Available

boundary

Past boundary

crop(𝐹t)

𝑣𝑡+1
*

𝑣𝑡
′

(a) Straight

𝑣𝑡

Available 

boundary

Past boundary

crop(𝐹t)

𝑣𝑡+1
*

𝑣𝑡
′

(b) Corner

Figure 2: The visualization of the principles of enahnced-iCurb to generate labels for agent training. The
ground-truth road curbs are shown by cyan lines. The label used to train the agent is shown by the pink
node. The generated vertices are denoted by yellow nodes, and edges are solid orange line segments. The
yellow rectangle is the attention region (i.e., crop(Ft), centering at v

′
t, which is the projection of vt on the

ground-truth boundary). The pink rectangle is called "label region", which means that the label of the next
vertex v∗t+1 must locate inside this rectangle. Label region is used to prevent v∗t+1 being to far from the v

′
t.

Starting from v
′
t, we go forward, and find the first vertex whose orientation has large enough difference

with that of v
′
t. The orientation value is obtained from the orientation map. In this way, the agent has large

step size on straight road (subfigure (a)) and decreases step size when corners are encountered (subfigure
(b)). The label v∗t+1 does not rely on the prediction v̂t+1 and is unique. So that the behavior of the agent is
more stable and predictable. Besides, corners receive enough attention for better performance.

3 Evaluation metrics

In our benchmark dataset, the evaluation metrics are three relaxed pixel-level metrics (i.e., Precision,
Recall and F1-score), the naive connectivity metric used in [1] and [2], APLS (Average Path Length Sim-
ilarity) [3] which is widely used in road-network evaluation, and our proposed ECM (Entropy-based
Connectivity Metric). In this section, we mainly discuss the topology metrics and compare them with
more examples.
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3.1 APLS

APLS is based on finding the shortest paths of randomly sampled vertex pairs, which shares a very similar
idea with TLTS [4]. First, sample N vertex pairs (a, b) in the ground-truth road boundaries, and make
sure that vertex a and b belong to the same road-boundary instance (a can reach b). Find the length of
the shortest path between a and b as l. Then, find the corresponding vertex pairs (a′, b′) in the predicted
road-boundaries (by minimum Euclidean distance). Find the length of the shortest path between a′ and
b′ as l′. Finally, calculated APLS by

APLS = 1− 1

N

N∑
min(1,

|l − l′|
l

) (1)

If there is no path between a′ and b′ or either a′ or b′ is too far from the ground-truth road boundary,
APLS of this pair is 0 (largest punishment). Larger APLS indicates better topology correctness. It is
widely used to evaluate the topology correctness in many past works, especially in road-network detec-
tion tasks.

However, since the vertex pairs are randomly selected, the results may not be stable, and sometimes it
gives very different scores. For better stability, more pairs should be sampled but it severely degrades the
computation efficiency since for each vertex pair, two rounds of Dijkstra algorithm should be conducted.
APLS is more appropriate to evaluate a complicated connected graph, such as the road network. For road
boundaries that are simple polylines without branches, there are better options.

3.2 Naive connectivity metric

This is a very simple metric to evaluate the connectivity of the obtained graph. In [2], this metric is defined
in this way: for each ground-truth boundary, let M be the number of its assigned predicted polylines,
and

connectivity =
1(M > 0)

M
(2)

It penalizes the assignment of multiple small predicted segments to a ground-truth road boundary. This
metric is very simple and efficient, but it only considers the number of assigned predicted segments,
which makes it very sensitive to noises and unaware of many properties of the obtained graph, such as
the position and the length of the disconnection.

3.3 ECM

Following the core idea of the naive connectivity metric, we add more parameters and entropy into it for
enhancement.

ECM =
N∑
i=1

αie
∑Mi

j=1 pj log(pj) (3)

Each ground-truth boundary instance is assigned withMi predicted instances. αi is the ratio of the length
of predicted instances projected to the ground-truth instance to the length of the current ground-truth
instance, and it measures the completion of the prediction. The exponential term measures the entropy
of the predicted instances. Larger entropy means the uncertainty to find a dominant predicted instance is
higher so that the connectivity is poor and ECM becomes lower.

ECM is based on the naive connectivity metric, but it can take more factors into consideration, which
makes this metric more comprehensive and reasonable to measure the quality of the obtained road-
boundary graph.

Compare with APLS, ECM is more robust and efficient.
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3.4 Comparison

In past works, like [5] and [6] , the topology correctness is measured by path-based metrics such as APLS
and TLTS, or junction-based metrics. But since road boundaries usually do not have junctions (inter-
section vertices) as the road network, junction-based metrics are not applicable to our task. Path-based
metrics are widely used in road-network detection works, and they share the same core idea. In this work,
we only consider APLS.

We provide some visualizations in Fig. 3 - Fig. 6 to compare the following metrics: F1-score, naive
connectivity, APLS and our proposed ECM. We hope the evaluation metric could (1) punish incorrect
disconnections (Fig. 3) (2) give shorter ground-truth instances lower weights (Fig. 4), (3) give longer
disconnections higher punishment (Fig. 5) and (4) give longer predicted boundaries higher score (Fig.
6). From the visualization, we find that ECM is obviously better than the naive metric while it has a
competitive performance compared with APLS.

(a) Ground truth

F1-score: 0.966

Naive: 0.750

APLS: 0.621

ECM: 0.488

(b) Prediction 1

F1-score: 0.988

Naive: 0.667

APLS: 0.472

ECM: 0.384

(c) Prediction 2

F1-score: 0.982

Naive: 0.625

APLS: 0.427

ECM: 0.333

(d) Prediction 3

Figure 3: Metrics should punish disconnections. The more disconnections in a prediction, the worse the
metric score should be. Compared with the naive connectivity metric and APLS, ECM is more sensitive
to disconnections. Both APLS and ECM have good discriminative power.

(a) Ground truth

F1-score: 0.966

Naive: 0.750

APLS: 0.621

ECM: 0.488

(b) Prediction 1

F1-score: 0.966

Naive: 0.750

APLS: 0.854

ECM: 0.828

(c) Prediction 2

Figure 4: Metrics should give longer instances larger weights. Prediction 1 should have a lower score than
prediction 2 since the disconnection happens in the longer instance. Both APLS and ECM perform well.
But the naive connectivity metric and pixel-level F1-score fail.

Even though ECM and APLS both have good ability for connectivity measurement, ECM has much better
efficiency and stability than APLS. The inefficiency and randomness are the main reason that the authors
of [2] propose the naive connectivity. Since APLS needs to randomly select vertex pairs, if the sampling
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(a) Ground truth

F1-score: 0.966

Naive: 0.750

APLS: 0.621

ECM: 0.488

(b) Prediction 1

F1-score: 0.771

Naive: 0.750

APLS: 0.354

ECM: 0.375

(c) Prediction 2

F1-score: 0.484

Naive: 0.750

APLS: 0.238

ECM: 0.262

(d) Prediction 3

Figure 5: Metrics should give longer disconnections larger punishment. Both ECM and APLS work well.

(a) Ground truth

F1-score: 0.966

Naive: 0.750

APLS: 0.621

ECM: 0.488

(b) Prediction 1

F1-score: 0.966

Naive: 0.750

APLS: 0.655

ECM: 0.530

(c) Prediction 2

F1-score: 0.966

Naive: 0.750

APLS: 0.829

ECM: 0.745

(d) Prediction 3

Figure 6: Metrics should encourage longer predicted instances since longer instances represent better
completion. And as prediction 3 shows, there might be a lot of very short predicted segments near the
endpoints due to noise, thus they should not receive huge punishment. Both APLS and ECM work well.
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number is not huge enough, the obtain evaluation score is not stable due to randomness; but if the number
is too huge, the efficiency is severely degraded since the time complexity of the shortest path algorithm
greatly expands. Therefore, trade-off between efficiency and stability should be made.

Moreover, APLS for road-boundary evaluation requires additional post-processing steps, i.e., simplify the
skeleton of road boundaries into a graph with fewer vertices. The original skeleton can be treated as a
graph whose vertices are all the foreground pixels, but this graph has too many vertices which take huge
time to calculate APLS. So we need to simplify it for better efficiency. In our implementation, we uniquely
sample vertices to maintain the effectiveness of APLS. The process is shown in Fig. 7.

All in all, compared with APLS, our proposed ECM is robust and effective. Besides, ECM shows much
better efficiency than APLS and does not require additional post-processing steps. Compare with the
naive connectivity metric, ECM can give a more comprehensive and reasonable measurement of the con-
nectivity.

Extra graph Sample vertices

Skeleton Dense road-boundary graph Uniquely sampled graph

Figure 7: The post-processing step to convert the road-boundary skeleton to a graph. We first treat every
foreground pixel as a vertex and obtained the dense graph (dense means every pixel is a vertex). The
dense graph cannot be used for APLS since it requires too much time to calculate the shortest path. So we
only sample some vertices for better efficiency. Unique sampling guarantees APLS punishes disconnec-
tions along the boundary equally.

In our implementation, after getting the predicted skeleton, we need to first convert it to a simplified
graph following the above processing steps, and then run APLS. It takes relatively a long time to complete
everything (more than 1 hour for all 3,289 testing images).

4 Data structure

4.1 Tile and patch

Each tile is split into 25 patches due to the limitation of GPUs’ memory. The name of the patch is
"tile_name + row number + column number". The tile split method is demonstrated in Fig. 8.

4.2 Aerial image patch

The way we create the aerial image patch is shown in Fig. 9. Each image is 1000 × 1000-sized, and has 4
channels. The first 3 channels are R,G,B. All aerial images are in tiff format.
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Figure 8: The demonstration of image tile split.
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Figure 9: Aerial image patch. The original point is the most top left pixel. The axis of rows is v or y, and
the axis of columns is u or x. All the points in our dataset is saved in the form of p=(v,u) or p=(y,x).

4.3 Binary map

The binary map labels the ground-truth road boundaries as foreground pixels. The coordinate of this map
is the same as that of the aerial image patch. The value of foreground pixels is 255. This map has 3 equal
channels. The visualization is shown in Fig. 10.

4.4 Instance map

Similar to the binary map. But different instance has different grey value, starting from 1 to N (number of
instances). The value of foreground pixels are their corresponding instance index. This map has 3 equal
channels. Please see Fig. 11.
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Figure 10: Binary map. For better visualization, the boundaries are usually widened, while they are
actually of one-pixel width.
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Figure 11: Instance map. For better visualization, the boundaries are usually widened, while they are
actually of one-pixel width. The grey value of foreground pixels is also enlarged for better visualization.

4.5 Endpoint map

In this map, the foreground is the endpoints of each ground-truth road-boundary instance. For better
supervision, each point is multiplied with a Gaussian kernel. The maximum grey value of this map is
255. This map has 3 equal channels. Please see Fig. 12.

4.6 Inverse distance map

In this map, the value of each pixel is the reciprocal of its shortest distance to the road boundary. The
maximum grey value of this map is 255. This map has 3 equal channels. Please see Fig. 15.
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Figure 12: Endpoint map. We multiple each endpoint by the Gaussian function for better supervision
ability.
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Figure 13: Inverse distance map. Each pixel p first find its shortest distance to the road boundary, and the
distance is recorded as d. Then we have d = max(d, 1) to remove to small distance values. Finally take
the reciprocal and multiply 255.

4.7 Direction map

This map is similar to the inverse distance map. At each pixel p = (y, x), this map records a unit vector
pointing to the shortest road boundaries. This map has 2 channels. Please see Fig. 15.

4.8 Orientation map

The foreground pixels of this map are the same as that of the binary map. While the pixel value |p| is the
angle θ between the road boundary and the v axis. To simplify the learning problem, we convert the angle
to a 64-class classification label (|p| =

⌊
32θ
π

⌋
). The value of this map ranges from 1 to 64. This map has 3

equal channels. Please see Fig. 15.
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Figure 14: Direction map visualization. At each pixel p = (y, x), this map records an unit vector (vy, vx).
For visualization, we have vy as R, vx as G and vx+vy

2 as B. Then multiply 255 to obtain the visualization.
But this map is actually of 2 channels.
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Figure 15: Orientation map visualization. The pink arrows show the direction of the road boundary, while
the actual value of this map is shown in the zoom-in region. Within the zoom-in region The pixel value
of the left instance is 33 and the right is 2.

4.9 Annotation sequence

Annotation sequence records the graph information of each ground-truth road-boundary instance. This
label is recorded in a JSON file. The JSON structure is shown in Fig. 16.

4.10 Dense sequence

Same as the annotation sequence, this sequence is recorded in a JSON file and it has the same JSON
structure as the annotation sequence. But the "seq" in this sequence is densified or saying rasterized, and
the process is visualized in Fig. 17.
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[
{   

# instance 1
“init_vertex”:[𝑦1

1, 𝑥1
1],

“end_vertex”:[𝑦𝑁1
1 , 𝑥𝑁1

1 ],
“seq”:[     [𝑦1

1, 𝑥1
1],

[𝑦2
1, 𝑥2

1],
…
[𝑦𝑁1

1 , 𝑥𝑁1
1 ]    ]

},
{   

# instance 2
“init_vertex”:[𝑦1

2, 𝑥1
2],

“end_vertex”:[𝑦𝑁2
2 , 𝑥𝑁2

2 ],
“seq”:[     [𝑦1

2, 𝑥1
2],

[𝑦2
2, 𝑥2

2],
…

[𝑦𝑁2
2 , 𝑥𝑁2

2 ]    ]
},
……

]

Figure 16: Annotation sequence. Each instance contains an initial vertex coordinate, an end vertex coor-
dinate and a sequence recording all the vertices of the current boundary instance. Each vertex is adjacent
to vertices before and after it.

Densify

Annotation sequence 𝑆A Dense sequence 𝑆𝐷

Figure 17: Densification/Rasterization of the annotation sequence. The orange pixels represent ver-
tices in the annotation sequence SA. They are interpolated to realize every two adjacent vertices eight-
neighboring to each other. The interpolation result is the dense sequence SD. SA can be regarded as a
subset of SD, which contains only the key vertices.
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