
Z. Xu, et. al 1

Supplementary document for IROS submission: CP-loss
March 5, 2021

Zhenhua Xu, Yuxiang Sun, Ming Liu

1 Introduction

In this supplementary document, the details of the loss function design and hyper-parameter tuning are
discussed. More equations and figures are provided.

1.1 Motivation

To relieve the occlusion issue and the limitation of computation resources of online road curb detection,
we propose to detect road curbs offline as prior information to assist the autonomous vehicles. The de-
tected road curbs could be used to create high-definition (HD) maps. Normally, we first predict the seg-
mentation map of the input aerial images and then conduct a series of post-processing to extract the graph
structure of road curbs. CP-loss is designed to improve the quality of segmentation maps by preserving
connectivity, which can effectively improve the topological correctness of the final result. In our experi-
ment, CP-loss is implemented by CUDA, thus it has almost the same efficiency performance as other loss
functions.

Figure 1: The schematic diagram of offline road curb detection. CP-loss is utilized to train the semantic
segmentation network for better connectivity. The obtained graph of road curbs can be used to create HD
maps for autonomous vehicles, and it is quite helpful to accelerate the deployment of autonomous driving
systems under large scenarios. For better visualization, the graph structure of road curbs are widened but
its width is actually one-pixel.

1.2 Evaluation results

Please note that the evaluation results of ablation studies and comparative experiments in Tab. 1 and Tab.
2 of the original paper are trade-off results. We should consider Precision, Recall, F1-score and SCM at the
same time. Thus, directly comparing a single evaluation metric is not appropriate. The evaluation curves
in Fig. 3 of the original paper should be a better option for comprehensive performance comparison. In
Fig. 3, our proposed CP-loss outperforms all other loss functions.



2 Supplementary document for IROS submission: CP-loss

2 The Design of CP-loss

Our CP-loss consists of a weighted cross-entropy loss LCE and a weighted dice loss LDice. The main issue
here is the design of weights assigned to both loss functions. Before analyzing the loss function design, we
first define some variables and symbols. For a pixel xi of an input image, its ground-truth label is gi and
the predicted probability by UNet is pi. The difference between gi and pi is denoted as ∆i, and smaller ∆i

indicates more precise prediction. Besides, we define the shortest distance between xi and corresponding
wrong skeletons as di (i.e., di = min_dis(pi, Skelf )). Smaller di means xi is closer to the wrong skeleton
and should receive more attention.

2.1 Weighted LCE

The final adopted LCE combines the distance function with Focal loss by addition and is shown in the
following equation:

LCE =
∑
i

[−uigilog(pi)− vi(1− gi)log(1− xi)]

ui = [1 + exp[−
min_dis(xi, SkelfG)

σ
]− pi]2

vi = [exp[−
min_dis(xi, SkelfG + SkelfP )

σ
] + pi]

2

(1)

where σ is a hyper-parameter to control the derivative and min_dis(xi, Skel) calculates the shortest dis-
tance between a pixel p and a skeleton Skel. Since the input image is 1000 × 1000-sized, the range
of the function min_dis(xi, Skel) is [0,

⌈
(1000

√
2)
⌉

= 1415). Then the range of the distance function
exp[−min_dis(xi,Skel)

σ ] is (exp[−1415
σ ], 1]. By tuning parameters in the preliminary experiments, we finally

set σ as 100 in our evaluation. Taking pi and di as two variables, we obtain the distribution of the weight,
which is visualized in Fig. 2.

(a) σ = 100, gi = 0 (b) σ = 100, gi = 1 (c) σ = 500, gi = 0 (d) σ = 500, gi = 1

Figure 2: The weights distribution of CP-loss. (a) and (b) have σ = 100 so they have more steep mesh
while (c) and (d) have σ = 500. (a) and (c) are for background pixels (gi = 0). (b) and (d) are for foreground
pixels (gi = 1). σ is finally set as 100 in our evaluation.

Based on Fig. 2, we list three advantages of the adopted weight coefficients:

1. It can focus on harder pixels (∆i is large) and pixels closer to the wrong skeletons (di is large).

2. For pixels with low ∆i, if they have small di, the weights are still relatively high. In this way, the
pixels are further pushed to the label value until they are exactly the same (i.e., ∆i is pushed to 0).
This is important for foreground pixels and background pixels near SkelG since it greatly reduces
uncertain pixels.



Z. Xu, et. al 3

3. For pixels with large di, if they also have large ∆i, the weight remains high. This property is im-
portant for background pixels because it can punish false positive predictions no matter how far
they are from the skeletons. Without this property, the prediction tends to be noisy and have more
false-positive predictions.

There are also some other methods to design the weight coefficients: (1) the naive multiplication method
and (2) the positive-exponential multiplication method. Their weights are visualized in Fig. 3.

(a) Naive, gi = 0 (b) Naive, gi = 1 (c) Pos-exp, gi = 0 (d) Pos-exp, gi = 1

Figure 3: The weights distribution of other methods. For better visualization, σ is set to 500. The naive
multiplication method (Naive) does not meet the second and third properties in the above analysis. It leads
to very unstable training, and the result has much more false predictions. For the positive-multiplication
method (Pos-exp), the gradient of pixels closed to the skeleton disappears and the network makes less
accurate predictions.

The naive multiplication method refers to simply multiplying the distance function and Focal loss. The
weight coefficients are:

ui = exp[−
min_dis(xi, SkelfG)

σ
] · (1− pi)2

vi = exp[−
min_dis(xi, SkelfG + SkelfP )

σ
] · p2i

(2)

The major problem of this method is that if ∆i is small or di is large, the weight becomes zero. So this
method only focuses on false-predicted and nearby pixels, but ignores all other cases. Therefore this
method always leads to much more false predictions, including false-positive and false-negative.

The positive-exponential method changes the exponential element from exp(−di) to exp(di). And the
equations are:

ui = [1− exp[
min_dis(xi, SkelfG)− µ

σ
] · pi]2

vi = [1− exp[
min_dis(xi, SkelfG)− µ

σ
] · (1− pi)]2

(3)

where µ is a hyper-parameter which is equal to dmax(di)e = 1415. This method has a critical problem:
the exponential element exp[min_dis(xi,Skel)−µ

σ ] multiplied with pi becomes very small if di is small. Then
the gradient of the loss function on xi disappears. This issue mainly affects the foreground pixels, and the
network trained by this method makes predictions with much more false-negative predictions.

With the aforementioned analysis and visualization, we clarify the correctness of the design of weighted
LCE in CP-loss.



4 Supplementary document for IROS submission: CP-loss

2.2 Weighted LDice

The final adopted weighted LDice also combines the distance function and Focal loss by addition, and the
equation of it is:

LDice = 1− 2

∑
i βipigi + smooth∑

i(βipi)
2 +

∑
i g

2
i + smooth

βi = ξ[1 + exp[−
min_dis(xi, SkelfG + SkelfP )

σ
]− ηpi]

(4)

where smooth is a small number to prevent zero denominator. Compared with LCE , LDice here has more
coefficients (i.e., ξ and η), which can make the gradient of LDice as what we expect. Before discussing
more about the extra coefficients, some differences between LCE and LDice should be noted. Because LCE
is a pixel level loss function, the weight on every pixel can directly affects the gradient of LCE , thus we
can simply analyze the weight distribution. But for the image-level LDice, the gradient of a single pixel
xi is affected by the whole image (i.e., the loss calculation is not independent), so we need to do more
calculation and talk about the gradient of each pixel.

Suppose the gradient of pixel xi is 5i, and for convenience, we replace the distance exponential element
with wi (i.e., wi = exp[−min_dis(xi,SkelfG+SkelfP )

σ ]. Also, we set the smooth term as 0 during the analysis.
Inspired by the analysis method used in [1], we only consider a single sample xi, then we have the dice
loss l:

l = 1− 2
βipigi

(βipi)2 + g2i

5i =
∂l

∂pi

=
∂l

∂βipi

∂βipi
∂pi

= −2
g2i − (βipi)

2

[(βipi)2 + g2i ]
2
· ξ(1 + wi − 2ηpi)gi

(5)

Apparently, for background pixels (gi = 0) the gradient becomes zero. In our formal experiment, the
gradient of background pixels is preserved by the smooth term, which is ignored for analysis convenience.
So we only consider the foreground pixels (gi = 1) and Eq. 5 becomes:

5i = −2
1− (βipi)

2

[(βipi)2 + 1]2
· ξ(1 + wi − 2ηpi)

= −2
1− [ξ(1 + wi − ηpi)]2

[(βipi)2 + 1]2
· ξ(1 + wi − 2ηpi)

(6)

For5i, we want to keep it non-positive for all pi and di. Because if5i has positive values, it means there
are non-boundary solutions to 5i = 0 (i.e., there exist pi ∈ (0, 1) that makes 5i = 0 with some di). Then
the network would be trapped at sub-optimal state and ∆i cannot be pushed to zero as much as possible,
which causes more wrong predictions. To keep5i non-positive, we have:

ξ(1 + wi − 2ηpi) > 0

1− [ξ(1 + wi − ηpi)]2 > 0

s.t.ξ > 0 and η > 0,∀pi, wi

(7)

By solving the inequality, we have 0 6 ξ 6 1
2 and 0 6 η 6 1

2 . The visualization of the gradient with
different parameter choices is shown in Fig. 4. After trying multiple combination of parameters, we have



Z. Xu, et. al 5

(a) ξ = 1
2 , η = 1

2 (b) ξ = 1
4 , η = 1

2 (c) ξ = 1
6 , η = 1

2 (d) ξ = 1
8 , η = 1

2

(e) ξ = 1
4 , η = 1

2 (f) ξ = 1
4 , η = 1

4 (g) ξ = 1
4 , η = 1

6 (h) ξ = 1
4 , η = 1

8

Figure 4: The gradient distribution of weighted LDice on pi and di. The first row shows results with
different ξ and the second row shows the results of different η. For ξ, the gradient of ξ = 1

2 is closed to 0
when pi = 1, di = 0, which does not meet the second advantage mentioned in LCE analysis. While ξ = 1

6
and ξ = 1

8 make the gradient too small in general, so we finally set ξ as 1
4 . For η, the smaller η is, the more

flat the distribution will be, so the network cannot focus on disconnectivity very well. Thus η is set as 1
2 .

ξ = 1
4 , η = 1

2 , and we finally have the weights for LDice:

βi =
1

4
[1 + exp[−

min_dis(xi, SkelfG + SkelfP )

σ
]− 1

2
pi] (8)

Similar to LCE , the naive multiplication method and the positive-exponential multiplication method were
also considered for the weights of LDice, but these two methods cannot produce satisfactory gradients for
training.

The equation of the weights of the naive multiplication method is:

βi = exp[−
min_dis(xi, SkelfG + SkelfP )

σ
](1− pi) = wi · (1− pi)

5i = −2
1− [wipi(1− pi)]2

[(βipi)2 + 1]2
· wi(1− 2pi)

(9)

Supposewi = exp[−min_dis(xi,SkelfG+SkelfP )−µ
σ ], then the equation of the weights of the positive-multiplication

method is:

βi = (1− exp[−
min_dis(xi, SkelfG + SkelfP )− µ

σ
]pi) = 1− wipi

5i = −2
1− (βipi)

2

[(βipi)2 + 1]2
· (1− 2wipi)

(10)

Both of these methods are not sufficient for our task. The visualization and explanation are shown in Fig.
5.



6 Supplementary document for IROS submission: CP-loss

(a) Naive, σ = 100 (b) Naive, σ = 500 (c) Pos-exp, σ = 100 (d) Pos-exp, σ = 500

Figure 5: The gradient distribution of other methods. Both the naive multiplication method (Naive) and
the positive-multiplication method (Pos-exp) produce gradient that crosses zero on non-boundary pixels.
Thus in our experiments, the weights obtained from these methods usually cause inferior results.

References

[1] X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li, “Dice loss for data-imbalanced nlp tasks,” 2020.


	Introduction
	Motivation
	Evaluation results

	The Design of CP-loss
	Weighted LCE
	Weighted LDice


